Archive for the ‘Mood disorder: Depression, Anxiety, Stress’ Category

Men’s Health, Mast Cell Activation Syndrome & New Leaf Natural Therapies!

Tuesday, July 24th, 2018

Men’s Health is so important!

It’s been fantastic since Congress….  top take-home factoids I’ve been loving are:

  • Men – get your testosterone checked!  If you need, support your testosterone levels with injections or supplements that contain tribulus, zinc, horny goat week (true herb!) etc
  • Testosterone is linked to mood disorders and exhaustion
  • Men born since 1970 have 1/2 the testosterone as those born before…  This is due to environmental toxins.  As I’ve always said, we can’t get rid of the toxins but we can support our detox capabilities with herbs and nutrients such as silymarin, lipoic acid, glutathione, anti-oxidants and vitamin C.  Lots of other herbs too!
  • This lack of testosterone since 1970 is being studied to see if it’s linked to kids with higher anxiety, depression, suicidal rates
  • It’s once estrodial takes over as the main hormone in men that estrodial interacts with environmental toxins and is linked to cancers…  Pre-1970 testosterone levels peaked at around 40 years old, Since 1970’s it’s often in the teenage years/early 20’s, so estrodial is becoming dominant much earlier
  • Adrenal fatigue should be named ‘Burnout Syndrome’ according to Dr Flavio Cadigiani
  • Poly Cystic Ovarian Syndrome should be renamed under ‘Metabolic Syndrome’ as it’s insulin and inflammation that drive the PCOS, yet women can have metabolic syndrome without the PCOS, therefore many practitioners run out of ability to support clients with painful periods.
  • Mast Cell Activation Syndrome – if you get your histamine levels tested, the maximum histamine levels you want are 8.  MCAS is linked to allergies, dizziness, asthma, POTS, anxiety
  • if you get unexplained pain in the brain (migraines), gut, uterus, spinal cord – you could have MCAS…  Pop in and see us!  There are nutrients known to pull stored histamine out of your body.
  • Every thought we have affects our genes either positively or negatively
  • Traumas from childhood can affect our kids / grandkids etc for up to 7 generations!  With kinesiology and universal consciousness techniques we can mitigate these effects.  In fact, studies show that a trauma in childhood activates obesity genes (we’re more lucky if we’ve been traumatised and don’t end up with weight challenges!) and addictive behaviours (are you self-medicating??)
  • Intermittent Fasting is proving to be a fantastic health-improvement tool for longevity!  The most researched and popular Intermittent Fasting time bracket by the speakers was the 18/6.  Off food for 18 hours (say 7pm until 1pm next day…).  Every hour over 12 hours of fasting doubles the benefit of the previous 12 hours!

AT New Leaf we support these issues with

  • detoxification processes including dietary adjustments; acupuncture; kinesiology; supplements & herbs; weight loss detox processes…
  • kinesiology to access information about where the histamines are and what we need to release them
  • emotional support – using Universal Consciousness Processes; kinesiology & LEAP

Talk soon,

 

Madonna
0417 643 849

LEAP: The Learning Enhancement Acupressure Program – by Dr Charles T. Krebs

Tuesday, July 26th, 2016

We’ve been doing kinesiology at New Leaf Natural Therapies for 20 years.  LEAP is an integrative approach to supporting better brain function – for moods, stress, survival patterns, learning problems, damaging behaviours, anxiety, suicidal thoughts…

LEAP®: The Learning Enhancement Acupressure Program: Correcting

Learning and Memory Problems with Acupressure and Kinesiology.

By Dr. Charles T. Krebs

ABSTRACT:

The Learning Enhancement Acupressure Program, or LEAP®, has been developed since 1985 inconjunction with clinical psychologists, speech pathologists, neurologists and other health professionals, as a very effective program for the correction of most learning difficulties. LEAP® is based on a new model of learning integrating recent concepts in neurophysiology of the brain and uses highly specific acupressure formatting to address stress within specific brain structures. The application of specific non-invasive acupressure and other energetic techniques can then resolve these stresses resulting in a return to normal function.

In the LEAP® model of learning Gestalt and Logic functions are not simply localised in the right or left cerebral hemisphere as in the popular Right Brain/Left Brain model of learning. But rather, each type of conscious brain function or process appears to have a cerebral “lead” function that is either predominantly Gestalt (Visuo-spatial, Global) or Logic (Linear, Sequential) in nature. These cortical “lead” functions provide a “point of entry” into a widely distributed system comprising many subconscious cortical sub-modules in both hemispheres and many subconscious subcortical modules throughout the limbic system and brainstem.

While the Gestalt and Logic “lead” functions are conscious, these functions are dependent upon many levels of subconscious sensory processing at many levels within the nervous system. While this processing through multiplexing and parallel processing at many different levels is highly efficient, it means that brain processing is “time bound”. Since many components of any mental function are performed in many different parts of the brain, and often at different speeds, coherent output in the form of “thinking” requires integration and synchronisation of all of these separate processes.

Loss of integrated brain function, termed loss of Brain Integration in LEAP®, thus results in the loss of a specific mental capacity, the ability to perform a specific type of mental task. When these specific mental capacities are required for academic performance, their loss can result in Specifi Learning Disabilities.

Specific Learning Disabilities (SLDs) arise in this model by either lack of access to specific subconscious processing modules, either cortical or subcortical, or the de-synchronisation of neural flows in the integrative pathways linking processing modules. Thus to resolve SLDs, you need only “open up” access to the “blocked” processing modules or re-synchronise the timing of information flow between them to re-instate integrated brain function.

The LEAP® program provides an integrated acupressure protocol using direct muscle biofeedback (kinesiology) as a tool to identify “stress” within specific brain nuclei and areas that have “blocked” integrated function. The application of the LEAP® acupressure protocol using acupressure and other energetic based techniques to re-synchronise brain function resolves learning and memory problems in a high percent of cases.

HISTORY OF SPECIFIC LEARNING DIFFICULTIES.

Difficulties with learning academic tasks such as reading, spelling and mathematics have been recognised for over a century, with Kussmaul in 1877 ascribed as the first person to specifically describe an inability to read, that persisted in the presence of intact sight and speech, as word blindness.1 The word dyslexia was coined by Berlin in 1887.2 Within a decade a Glasgow eye surgeon James Hinschelwood (1895) and a Seaford General Practitioner Pringle Morgan (1896) observed students who were incapable of learning to read and hypothesised that this was based on a failure of development of the relevant brain areas which were believed to be absent or abnormal.

This model was based on the assumption that developmental dyslexia (congenital dyslexia) was similar in form to acquired dyslexia, which is dyslexia due to brain damage after a person has already learned to read. Deficits in other types of learning, such as mathematics, would also result from some other underlying brain damage or abnormality.3

Work in the early part of the twentieth century, particularly by Samuel T. Orton in the 1920s and 1930s suggested that learning difficulties such as dyslexia were not based on anatomical absence or abnormality, but rather it was delay in the development of various areas that caused these dysfunctions. This belief was largely ignored until the 1960s when it was revived by a growing interest in neuropsychology. However, more recent developments in neuropsychology and neurophysiology support the hypothesis that dysfunctions within the brain, both anatomical and developmental, may be causal in many learning problems.4

It was not until 1963, in an address given by Samuel Kirk, who argued for better descriptions of children’s school problems that the term “learning disabilities” originated. Since that time there’s been a proliferation of labels that attempt to dissociate the learning disabled from the retarded and brain damaged.

Definitions

In the context of this synopsis, Specific Learning Disorders or Disabilities (SLDs) relates to problems with physical co-ordination and acquiring the academic skills of reading, writing, spelling and mathematics including both Dyslexia and Attention Deficit Disorder (ADD) with or without hyperactivity. ADD with hyperactivity is now commonly called Attention Deficit Hyperactivity Disorder (ADHD) or hyperkinetic disorder in Europe. Historically, Dyslexia has been widely defined in terms of deficits in the areas of reading, spelling and language. However, more recent conceptualisations have included a definition that also encompasses a wide range of problems, including clumsiness and difficulty with rote learning.5 Fawcett and Nicolson have also challenged the prevailing hypothesis that Dyslexia is merely a language based problem, suggesting that it might be a more generalised deficit in the acquisition of skills.6

The term Dyslexia is not defined in the DSM IV (1994) although it is still commonly used in literature discussing various learning difficulties. The term Learning Disorders (DSM IV) currently encompasses various types of learning difficulties including dyslexia and Attention Deficit Disorder (ADD). Learning Disorders are defined in the DSM IV as being essentially a persistent pattern of inattention and/or hyperactivity-impulsivity that is more frequent and severe than is typically observed in individuals at a comparable level of development. The performance of these individuals on standardised tests for reading, mathematics, or written expression is substantially below, more than 2 standard deviations (SDs), same age peers even though their IQ scores are average or above average.7

Incidence

Frequently, children diagnosed as learning disabled are also inattentive and deficient in linguistic skills, most often in reading.8 Rutter and Yule examined a large population of children from a number of different studies and found 3.5% of Isle of Wight 10-year-olds, 4.5% of 14-year-olds and over 6% of London 10-year-olds showed reading difficulties.9 Gaddes looked at the proportion of children with learning disorders in various studies in both North America and Europe and found that the need for special training for learning disorders ranged between 10-15% of the school age population.10 However, estimates of the prevalence of learning disorders for broad age ranges is problematic because a learning disability is an emergent problem that is often not evident until later years in schooling. Using the criteria of defining learning disorders as being two years behind on standardised tests, less than 1% of 6-year-olds are disabled, 2% of 7-year-olds and so on until at age 19, 25% would be classified as learning disabled. So these children fall progressively behind as they mature and the complexity of work increases.11 In an address given by the Australian Federal Schools Minister, Dr David Kemp, in October 1996, Kemp stated that a study of 28,000 students in four surveys in Australia found 30% of year 9 students lacked basic literacy skills. This high incidence of learning disorders in school children indicates a need for effective treatment. Studies in other countries, both English, French and German support these figures, so specific learning difficulties, which cover all types of learning disabilities from dyslexia, reading problems, ADD to ADHD, probably represent greater than 15% of school-aged children, and may be as high as one third of all school-aged children.

Causes

Currently hypotheses concerning learning disorders suggest that they are primarily the result of one or more of five major factors;

1) structural damage,
2) brain dysfunction,
3) abnormal cerebral lateralisation,
4) maturational lag and
5) environment deprivation.

While none of these theories is unequivocally supported by current data, all of these factors may contribute in varying degrees to learning disabilities.12

Brain damage and overt brain dysfunction would appear to account for a relatively small percentage of children with learning disorders. The great majority of other children with learning disorders do not typically show many of the neurological symptoms associated with brain damage in adults. For instance, EEG and CT studies have not shown structural damage and abnormal EEGs correlated with known brain damage are not consistently observed in children with learning disorders.13 Rather than direct brain damage, there is evidence that abnormal physiological or biochemical processes may be responsible for malfunction in some part of the cerebral cortex.

Electrophysiological recording studies have associated specific high frequency EEG and AEP (averaged evoked potentials) abnormalities with various types of learning disorders.14 Recent studies with SSVEP (Steady state visual evoked potential) have shown that children diagnosed with Attention Deficit Disorder demonstrate similar abnormal SSVEP patterns when compared to normal subjects while performing the same cognitive task.15 The brain dysfunction hypothesis suggests that the dysfunction may be a consequence of defective arousal mechanisms resulting in some form of inadequate cerebral activation.16

This is supported by studies of children with learning disorders that show they have difficulty on continuous performance tests requiring attention and low distractibility; had slower reaction times to stimuli, and increased errors due to impulsivity on tests of visual searching.17 Douglas proposed that the deficits on these tasks resulted from inadequate cerebral activation. Learning disorders of some types at least, do improve with drugs like amphetamines that cause cerebral activation via increasing subcortical arousal. In fact this is the basis of treating hyperactive children with Ritalin.18

An alternative model of learning disorders is based on recent neurophysiological findings that suggest it is the timing and synchronisation of neural activity in separate brain areas that creates high order cognitive functions. Any loss or malfunction of the timing mechanism may cause disintegration of neural activity and hence dysfunction in cognitive tasks.19 Clearly, brain dysfunction due to inadequate cerebral activation may indeed lead to disruption of the timing and synchronisation of neural flows, and thus these two hypotheses may just be different aspects of the same process.

This model supports the approach in the Learning Enhancement Advanced Program (LEAP®) that Dr. Krebs developed in the late 1980s early 1990s.20 In the LEAP® Model, Specific Learning Disorders are based on the disruption or loss of timing and synchronisation between the neural activity in the diverse brain regions, both cortical and subcortical, that must be synchronised in order for successful integration to produce normal cognitive activity. Learning disorders would arise in this model from a lack of integration of functions that occur simultaneously in separate brain regions.

If the brain does integrate separate processes into meaningful combinations we call ‘thought’ or cognitive ability, then the main risk is mis-timing or loss of synchronisation between these processes. To quote Damasio “any malfunction of the timing mechanism would be likely to create spurious integration or disintegration”.21 For synchronous firing of neurons in many separate brain areas to create cognitive functions would require maintenance of focused activity at these different sites long enough for meaningful integration of disparate information and decisions to be made.

THE LEAP® MODEL OF LEARNING:

From a review of the major brain structures and the workings of learning and memory in the neurological literature, it is clear that both memory and learning do not involve a single, global hierarchical system in the brain. But rather, learning involves interplay between many inter-linked sub-systems or modules.22 Also, the timing and synchronisation of information flow between these sub-systems and modules appears to be critical to the success of learning and coherent cognitive function.

However, the sub-systems or modules underlying both learning and memory are both conscious and subconscious with most of the early leveling processing being totally subconscious, and only the highest levels of neural processing reaching consciousness. Yet, it is indeed these conscious modules that initiate and direct the processing to be done by the subconscious modules, as both learning and memory require “conscious” effort to occur. This means that the memory and learning processes can be disrupted at both the conscious and subconscious levels, depending upon which neural substrates or integrative pathways are disrupted.

Sensory processing of all types is initially a relatively linear chain of neural impulses originating from a generator potential of the sensory receptor, and following a chain of neurons into the Central Nervous System (CNS) and brain. However, this initially linear stream of nerve impulses, the data of the CNS, rapidly becomes divergent and multiplexed at higher levels of cortical processing.

Conscious perception only arises at the highest levels of these multiplexed data flows as they are reintegrated back into unified conscious perception by the cortical columns directing all conscious brain activity. Thinking and other cognitive abilities rely upon all of the proceeding levels of subconscious sensory processing, which are predominately bilateral initially, but which become progressively asymmetrical and lateralised with increasing levels of conscious awareness. Sensory information is processed initially as neural flows of increasing complexity that generate preverbal images and symbols, but becomes increasingly defined by language in higher level cognitive processes. And language by its very nature is based upon abstract representations of external reality (called words), that follow linear rules (grammar), and word order linked to meaning (syntax). Hence it is predominately sequential and linear in form, which permits analytical evaluation of the thoughts generated following rational rules of Logic. From the perspective of Logic, the world is interpreted as parts that can be constructed into a whole via deductive reasoning.

Sensory and other mental data not suitable for language-based rational processing is processed via visuo-spatial image and symbols that permit global, holistic comprehension of the whole and is inherently non-rational.23 This global, simultaneous, non-rational visuo-spatial processing has been termed Gestalt (German for pattern or form), with the meaning of the whole extracted via inductive reasoning. From the Gestalt perspective, the world is seen as a “whole” with intuitive understanding of the properties of the whole. There is no rational analysis of “Why?”, it just “Is”.

In the LEAP® Model of Learning, it is recognized that most of the lower level linear sensory processing occurs below conscious perception, that is either subcortical, being processed in the brainstem or other brain nuclei like the hypothalamus, thalamus, basal ganglia, etc., or is palaeocortical and limbic. Even the basal levels of cortical processing are largely bilateral and subconscious, and thus occur outside of conscious perception. All higher level cortical processing, which may become conscious, is thus reliant upon maintenance of integrated function and neural flows at these subconscious levels.

However, the more overtly cognitive components of learning rapidly become lateralised with processing dominated by activation of cortical columns, the functional units of the neocortex, in one hemisphere of the brain or the other. In right-handed people, Logic processing typically activates cortical columns in the left hemisphere, that then process the data in a linear analytical way, while activation of cortical columns in the right hemisphere process data in a Gestalt, visuo-spatial way.

Thus, at the highest levels of conscious neural processing underlying cognition and thought, whether that “thought” be verbally based language of Logic, or global intuitively based “knowing” of Gestalt, the neural processing is highly lateralised and is predominately processed in the right or left hemisphere.

The neural substrates for all “conscious” functions therefore are cortical columns of the neocortex (Fig. 1). Conscious activation of a cortical column acts to initiate a cascade of neural flows that rapidly spread to other cortical areas both conscious and subconscious in both hemispheres, and also into many subcortical structures as well. These consciously activated cortical columns initiate either Gestalt or Logic functions depending in which hemisphere they are located.

In LEAP® we term cortical columns activating Logic functions, Logic “lead” functions, and those activating Gestalt functions, Gestalt “lead” functions. These “lead” functions provide points of entry into an inter-linked set of cortical and subcortical modules that then perform our mental functions.

Figure 1. Cortical Columns. Vertical slabs of cortex consisting of all six distinct cell layers, called cortical columns, are the functional units of the cerebral cortex. Some of the cells like the large pyramidal cells have dendrites that extend through almost all layers and axons that exit the gray matter to become part of the white matter tracts carrying information to other parts of the brain and body. There are also innumerable interneurons connecting the cells within each cell layer and between the layers.

Indeed, it was a misunderstanding about the nature of these “lead” functions from which the popular “Right Brain – Left Brain” model of learning and brain function arose. Because damage to specific cortical columns caused loss of specific conscious functions, e.g. the ability to form an image, or figure out certain types of problems or solve certain types of puzzles, it was assumed that the damaged area actually did that specific function. In reality, all that cortical column did was provide a point of entry into these inter-linked sets of cortical and subcortical modules that actually performed the function lost because of the damage to the cortical “lead” function.

An analogy would be damage to the “K” key on your keyboard. Your consciousness is still intact and able to initiate “K” questions, and your computer system is still able to process and answer “K” questions, but the interface to initiate “K” processing in the computer has been damaged. Like wise, if a Gestalt “lead” function is damaged, the process initiated by this “lead” function no longer activates the inter-linked cortical and subcortical functions that are required for this process to occur. Thus, while damage to the area initiating a function, “blocks” the rest of the processing needed to perform the function, the area initiating function never actually ever “did” the function in the first place. To continue this analogy, in most cases it is not overt “damage” to the cortical “lead” function or subcortical brain areas that prevents effective thinking, but rather “blocked” access to these brain areas due to some stressor that is the problem. Thus, much in the same way a “sticky” key blocks fluent typing, “blocked access” to specific brain areas blocks effective thinking and problem-solving.

Synopsis of the LEAP® Model of Learning:

In summary, the LEAP® Model of Learning is based on the following suppositions about the nature and location of neural processing underlying learning and memory:

Sensory processing initiated by sensory receptors generates initially linear neural flows that rapidly diverge at each successive processing centre (spinal and cranial nerve ganglia, brainstem nuclei, subcortical nuclei, limbic cortices, and finally neocortical columns) into a number of different complex data streams. All processing below the neocortex is subconscious.

Each processing centre, at each successive level within the spinal cord, brainstem, diencephalon, basal forebrain and cortex elaborates the sensory data, defining some aspect more than another, or adds additional types of information needed to define the sensory data further at the next level of processing. All processing below the neocortex is subconscious.

At the higher cortical levels, input from many lower levels both cortical and subcortical is integrated to form a conscious perception of the initial sensory experience.

These higher cortical levels not only integrate processing of the “raw” sensory data, but also include integration of input from memory areas about past experiences with similar sensory stimuli.

At the highest cortical levels the conscious perceptions formed at lower cortical levels are further processed asymmetrically in either Gestalt or Logic cortical columns, and hence perceived as a visuos-patial pattern or a Gestalt, or abstractly as a verbal word based language or an abstract symbol based mathematical language.

The very highest levels of conscious processing that underlie our thinking about conscious perceptions, while dependent upon input from all areas of the brain, are generally frontal lobe and particularly involve working memory areas in the Dorsolateral Frontal Cortex.

A whole set of basal brainstem mechanisms maintain the organism in a state of homeostasis, such that higher level conscious sensory processing can proceed effectively:

These include the Reticular Activating System, the Periventricular Survival System, the Vestibular System and the Sensory-Motor System. Imbalances within or between these systems may disrupt on-going sensory processing and integration at this and higher levels. Processing at this level is totally subconscious.

The initial “raw” data stream is “sampled” by the Amygdala and other survival centres in the brainstem, and coloured by the survival emotions paired or associated with the sensory stimuli being analyzed, including the physiological responses to these emotions, and is the basis of Conditioned Learning. These primary survival emotions may disrupt on-going sensory processing and integration at this and higher levels. Processing at this level is subconscious.

When survival emotions of the Fight or Flight response are activated above some “threshold” value, the amygdala and other brainstem structures such as the Periaqueductal Grey Matter of the midbrain inhibit frontal cortical processing, interfering with reasoning and problem-solving. The cause of this loss of higher level conscious cortical processing is a direct consequence of activation of the subconscious primary survival emotions of the Limbic System and Brainstem.

Secondary processing of the sensory stimuli in the Brainstem, Limbic System and lower cortical levels generates a series of control functions defining the nature of the sensory data stream (e.g. control of pupils in vision) and second-order integration of this sensory data (e.g. movement, shape and location of object in space). Processing at this level is subconscious.

Further processing in the palaecortical components of the Limbic System (e.g. hippocampus, cingulate, subcallosal and orbitofrontal cortices) generates secondary emotions relative to the sensory data stream and primary emotions already supplied by the amygdala and other brainstem areas via sampling memory of related events. These secondary limbic emotions may disrupt on-going sensory processing and integration at this and higher levels. Processing at this level is largely subconscious.

Initial cortical processing is predominately bilateral and subconscious, and is dependent upon earlier processing at brainstem and subcortical levels. Emotions, either primary or secondary, may disrupt on-going sensory processing and integration at this and higher levels.

At some level of cortical processing the sensory data stream emerges into a conscious perception, and is dependent upon earlier processing at brainstem, subcortical, and earlier cortical levels. Emotions, either primary or secondary, may disrupt on-going integration at this and higher levels

At the highest levels of cortical processing, the processing is largely done in one hemisphere or the other and perceived consciously as a logical, rational thought or a visuospatial Gestalt, and is dependent upon earlier processing at brainstem, subcortical and cortical levels. Emotions, either primary or secondary, may disrupt on-going integration at this level, and any “thinking” dependent upon this level of processing.

Thinking about the fully processed and integrated sensory experience in the frontal lobes, based upon remembered sensory experiences relevant to the current experience may lead to decisions, which will be represented neurologically by activation of either Logic or Gestalt “lead” functions or both.

These “lead” functions will then initiate a cascade of neurological flow, which is initially frontal cortical, but rapidly flows into other cortical areas and subcortical structures like the basal ganglia, thalamus, and cerebellum, which in turn feedback to the cortex and each other. Emotions, either primary or secondary, may disrupt on-going processing and integration at any level of this process, and thus overtly affect the final outcome of the cognitive functions taking place.

Coherent neurological processing at any stage of the above process is dependent upon both uninterrupted flows along integrative pathways and within integrative processing centres. Disruption or de-synchronisation of the timing of these integrative neural flows or disruption or de-synchronisation of processing in any of the integrative centres may result in loss of cognitive function.

Maintaining integration along all integrative pathways and within all integrative centres produces optimum function, a state called Brain Integration in LEAP.

Loss of integrated brain function is the principal cause of dysfunction in both mental and physical performance, called Loss of Brain Integration in LEAP.

The primary mechanism causing Loss of Brain Integration is de-synchronisation and loss of timing of neural flows along integrative pathways and within integrative centres by inhibition or excitation of these pathways and centres by neural flows originating from brainstem and limbic survival related emotions.

On-going Loss of Brain Integration is often generated by early childhood trauma that creates long-term disruption of Brain Integration as a mechanism of coping.

Other factors affecting Brain Integration are genetic, structural, organic brain damage, and environmental stressors:

o Structural defects or abnormalities can be of developmental origin, e.g. neuronal migration problems, or result from toxin exposure at specific critical periods of development, e.g. fetal alcohol syndrome. Many cognitive defects have been shown to correlate with abnormalities in brain structure.24

o Organic Brain Damage may result from a head injury, and this damage often results in sclerosis that disrupts neural flows underlying Brain Integration (e.g. hippocampal sclerosis and subsequent epilepsy are often associated with learning disorders).

o Genetic Factors affecting Brain Integration are often genes that code for specific alleles for specific enzymes involved in maintaining normal levels of neurotransmitters or receptors in brain circuits.25 Deficiencies in either neurotransmitters or receptors will compromise Brain Integration, and have behavioural consequences. This is both the basis of much ADHD behaviour and the justification for drug use to ameliorate these behaviours.26

Other genes may code for alleles that affect fatty acid metabolism and utilisation, especially in maintaining neuronal membrane stability and function. This affects predominately physical co-ordination and reading.27

o Diet and nutritional deficiencies may also compromise brain function and result in loss of Brain Integration. Diets rich in fast or junk foods often create marginal nutritional deficiencies that may disrupt brain function, and often contain various preservatives and additives, like the azo-food dye tartrazine, that may cause a total loss of brain integration in sensitive individuals28.

Indeed, the misbehaviour and academic performance of children and young adults have been shown to improve significantly with diet change or nutritional supplementation29, and several recent books have discussed this aspect of behaviour and learning problems30.

o Environmental factors such as electromagnetic fields emitted from man-made electronic equipment and Geopathic stress from distortions in the earth’s electromagnetic fields may affect the brain integration of sensitive individuals and result in learning problems. 31

Loss of Brain Integration and Compensation

When Brain Integration is lost via disruption of the most efficient neural pathways and/or centres, either by organic damage or by functional inhibition of cortical or subcortical functions due to outputs from survival centres in the brain, specific conscious functions dependent upon this integration is also disrupted. The overt loss of conscious function is, however, often far less than the degree of interference with underlying functions might suggest because the brain is a master at compensation and will automatically compensate for these disrupted flows by using other areas of the brain, both conscious and subconscious to produce the most efficient processing possible.

Thus, even children with considerable organic brain damage will often establish compensatory neurological patterns of activity to produce varying levels of function in spite of massive disruption of neural pathways underlying normal function, e.g. children with cerebral palsy may learn to walk and talk. It is indeed this tremendous compensatory capacity of the brain that allows even highly disintegrated brains to produce some degree of function, however, the level of dysfunction controls the degree of compensation. Thus, the greater the degree of dysfunction present, the lesscompensation that is possible.

If the disruption of integrated function is at the more basal levels of integration, the ability to compensate for the resulting dysfunction is much more limited than if the loss of integration is at a higher level of processing because all higher levels of processing are dependent upon the quality of the data integrated at earlier levels of processing. For instance, while damage to an early component of vision, say the retina or optic nerve totally disrupts sight, damage and hence loss of integration in the V3 area of the occipital cortex may leave the image fully intact, but disrupt only colour vision.

When the highest levels of cortical integration are disrupted directly or lower level cortical or subcortical functions underlying these higher cortical functions are disrupted, we may lose the capacity to “think” in certain ways. For instance, we may maintain Gestalt creative abilities (e.g. be good at art and design), but lose the ability to perform even simple mathematics because of the loss of the ability to abstract (e.g. are hopeless at maths). Specific Learning Disorders result from the loss of integration in of higher-level cortical functions or lower-level subconscious cortical or subcortical functions supporting these higher-level functions directly activated by consciousness.

Children and adults suffering Specific Learning Disorders usually know what they need to do, often even how to do it (e.g. I want to spell this word, so I need to sequence the letters and remember this sequence). But they just cannot activate the necessary subcortical and cortical processing to do what they know how and want to do consciously because of loss of integration at some level of neural processing required to do this function. When this loss of Brain Integration affects their ability to read, spell, write or do mathematics, it results in SLDs. However, they will still attempt to perform these functions, but in some compensated way. For instance, a child that cannot spell words correctly (that is, visually in English), still attempts to spell words, but using phonetics to compensate for the “mind’s eye” image he/she cannot create.

Because the level at which the integration is disrupted is unknown to the consciousness and compensation is largely subconscious and automatic, a person with Specific Learning Disorders is only aware that some function is difficult or not possible to perform, but not why this is so. Most often Brain Integration is lost in subconscious functions that were never accessible to our consciousness in the first place.

The Average Teenage Brain – Great Article!

Tuesday, July 26th, 2016

I found this fantastic article about the teenage brain – how tough is it being a parent these days? There’s more anxiety, depression, suicidal thoughts and damaging behaviours – our children are suffering.   Children respond so well to kinesiology – it helps to diffuse the stress patterns, naturopathically we can support better mood and hormone levels and energetically we can support keeping kids balanced.  Eventually teenage stress leads to adrenal exhaustion or immune dysfunction, creating challenges in their early adult years.

Luckily at New Leaf Natural Therapies there are many things we can do to help teenagers – treatments and nutrients.  Call us on 3348 6098 to discuss how we can help your child.

“During adolescence the brain’s ability to change is especially pronounced—and that can be a double-edged sword. Jay N. Giedd, a child and adolescent psychiatrist at the National Institute of Mental Health who specializes in brain imaging, points out that the brain’s plasticity allows adolescents to learn and adapt, which paves the way for independence. But it also poses dangers: different rates of development can lead to poor decision making, risk taking—and, in some cases, diagnosable disorders.

Across cultures and millennia, the teen years have been noted as a time of dramatic changes in body and behaviour. During this time most people successfully navigate the transition from depending upon family to becoming a self-sufficient adult member of the society. However, adolescence is also a time of increased conflicts with parents, mood volatility, risky behaviour and, for some, the emergence of psychopathology.

The physical changes associated with puberty are conspicuous and well described. The brain’s transformation is every bit as dramatic but, to the unaided eye, is visible only in terms of new and different behaviour. The teen brain is not broken or defective. Rather, it is wonderfully optimised to promote our success as a species.

Beginning in childhood and continuing through adolescence, dynamic processes drive brain development, creating the flexibility that allows the brain to refine itself, specialize and sharpen its functions for the specific demands of its environment. Maturing connections pave the way for increased communication among brain regions, enabling greater integration and complexity of thought. When what we call adolescence arrives, a changing balance between brain systems involved in emotion and regulating emotion spawns increased novelty seeking, risk taking and a shift toward peer-based interactions.

These behaviours, found in all social mammals, encourage separating from the comfort and safety of our families to explore new environments and seek unrelated mates.1 However, these potentially adaptive behaviours also pose substantial dangers, especially when mixed with modern temptations and easy access to potent substances of abuse, firearms and high-speed motor vehicles.

In many ways adolescence is the healthiest time of life. The immune system, resistance to cancer, tolerance for heat and cold and several other variables are at their peak. Despite physical strengths, however, illness and mortality increase 200 percent to 300 percent. As of 2005, the most recent year for which statistics are available, motor vehicle accidents, the No. 1 cause, accounted for about half of deaths. Nos. 2 and 3 were homicide and suicide.2 Understanding this healthy-body, risk-taking-brain paradox will require greater insight into how the brain changes during this period of life. Such enhanced understanding may help to guide interventions when illnesses emerge or to inform parenting or educational approaches to encourage healthy development.

Adolescent Neurobiology: Three Themes

The brain, the most protected organ of the body, has been particularly opaque to investigation of what occurs during adolescence. But now the picture emerging from the science of adolescent neurobiology highlights both the brain’s capacity to handle increasing cognitive complexity and an enormous potential for plasticity—the brain’s ongoing ability to change. The advent of structural and functional magnetic resonance imaging (MRI), which combines a powerful magnet, radio waves, and sophisticated computer technology to provide exquisitely accurate pictures of brain anatomy and physiology, has opened an unprecedented window into the biology of the brain, including how its tissues function and how particular mental or physical activities change blood flow. Because the technique does not use ionizing radiation, it is well suited for pediatric studies and has launched a new era of neuroscience. Three themes emerge from neuroimaging research in adolescents:

  1. Brain cells, their connections and receptors for chemical messengers called neurotransmitters peak during childhood, then decline in adolescence.
  2. Connectivity among brain regions increases.
  3. The balance among frontal (executive-control) and limbic (emotional) systems changes.

These themes appear again and again in our studies of the biological underpinnings for cognitive and behavioral changes in teenagers.

Theme 1: Childhood Peaks Followed by Adolescent Declines in Cells, Connections and Receptors

The brain’s 100 billion neurons and quadrillion synapses create a multitude of potential connection patterns. As teens interact with the unique challenges of their environment, these connections form and re-form, giving rise to specific behaviors—with positive or negative outcomes. This plasticity is the essence of adolescent neurobiology and underlies both the enormous learning potential and the vulnerability of the teen years.

Neuroimaging reveals that gray matter volumes—which reflect the size and number of branches of brain cells—increase during childhood, peak at different times depending on the location in the brain, decline through adolescence, level off during adulthood and then decline somewhat further in senescence. This pattern of childhood peaks followed by adolescent declines occurs not only in gray matter volumes but also in the number of synapses and the densities of neurotransmitter receptors.3 This one-two punch—overproduction followed by competitive elimination—drives complexity not only in brain development but also across myriad natural systems.

Theme 2: Increased Connectivity

Many cognitive advances during adolescence stem from faster communication in brain circuitry and increased integration of brain activity. To use a language metaphor, brain maturation is not so much a matter of adding new letters as it is one of combining existing letters into words, words into sentences and sentences into paragraphs.

“Connectivity” characterizes several neuroscience concepts. In anatomic studies connectivity can mean a physical link between areas of the brain that share common developmental trajectories. In studies of brain function, connectivity describes the relationship between different parts of the brain that activate together during a task. In genetic studies it refers to different regions that are influenced by the same genetic or environmental factors. All of these types of connectivity increase during adolescence.

In structural magnetic resonance imaging studies of brain anatomy, connectivity, as indicated by the volume of white matter—bundles of nerve cells’ axons, which link various regions or areas of the brain—increases throughout childhood and adolescence and continues to grow until women reach their 40s and men their 30s. The foundation of this increase in wiring is myelination, the formation of a fatty sheath of electrical insulation around axons, which speeds conduction of nerve impulses. The increase is not subtle—myelinated axons transmit impulses up to 100 times faster than unmyelinated axons. Myelination also accelerates the brain’s information processing via a decrease in the recovery time between firings. That allows up to a 30-fold increase in the frequency with which a given neuron can transmit information. This combination—the increase in speed and the decrease in recovery time—is roughly equivalent to a 3,000-fold increase in computer bandwidth.

However, recent investigations into white matter are revealing a much more nuanced role for myelin than a simple “pedal to the metal” increase in transmission speed. Neurons integrate information from other neurons by summing excitatory and inhibitory input. If excitatory input exceeds a certain threshold, the receiving neuron fires and initiates a series of molecular changes that strengthens the synapses, or connections, from the input neurons. Donald Hebb famously described this process in 1940 as “cells that fire together wire together.” It forms the basis for learning. In order for input from nearby and more distant neurons to arrive simultaneously, the transmission must be exquisitely timed. Myelin is intimately involved in the fine-tuning of this timing, which encodes the basis for thought, consciousness and meaning in the brain. The dynamic activity of myelination during adolescence reflects how much new wiring is occurring.

On the flip side, recent research reveals that myelination also helps close the windows of plasticity by inhibiting axon sprouting and the creation of new synapses.4 Thus, as myelination proceeds, circuitry that is used the most becomes faster, but at the cost of decreased plasticity.

Advances in imaging techniques such as diffusion tensor imaging (DTI) and magnetization transfer (MT) imaging have helped spark interest in these processes by allowing researchers to characterize the direction of axons and the microstructure of white matter. These new techniques further confirm an increase in white matter organization during adolescence, which correlates in specific brain regions with improvements in language,5 reading,6 ability to inhibit a response7 and memory.5

Functional magnetic resonance imaging studies also consistently demonstrate increasing and more efficient communication among brain regions during child and adolescent development. We can measure this communication by comparing regions’ activation during a task. In studies assessing memory8 and resistance to peer pressure,9 the efficiency of communication in the relevant circuitry was a better predictor of how teens performed than was a measurement of metabolic activity in the regions involved.

These lines of investigation, along with EEG studies indicating increased linking of electrical activity in different brain regions, converge to establish a fundamental maturation pattern in the brain: an increase in cognitive activity that relies on tying together and integrating information from multiple sources. These changes allow for greater complexity and depth of thought.

Theme 3: Changing Frontal/Limbic Balance

The relationship between earlier-maturing limbic system networks, which are the seat of emotion, and later-maturing frontal lobe networks, which help regulate emotion, is dynamic. Appreciating the interplay between limbic and cognitive systems is imperative for understanding decision making during adolescence. Psychological tests are usually conducted under conditions of “cold cognition”—hypothetical, low-emotion situations. However, real-world decision making often occurs under conditions of “hot cognition”—high arousal, with peer pressure and real consequences. Neuroimaging investigations continue to discern the different biological circuitry involved in hot and cold cognition and are beginning to map how the parts of the brain involved in decision making mature.

Frontal lobe circuitry mediates “executive functioning,” a term encompassing a broad array of abilities, including attention, response inhibition, regulation of emotion, organization and long-range planning. Structural MRI studies of cortical thickness indicate that areas involved in high-level integration of input from disparate parts of the brain mature particularly late and do not reach adult levels until the mid 20s

Across a wide variety of tasks, fMRI studies consistently show an increasing proportion of frontal versus striatal or limbic activity as we progress from childhood to adulthood. For example, among 37 study participants aged 7–29, the response to rewards in the nucleus accumbens (related to pleasure seeking) of adolescents was equivalent to that in adults, but activity in the adolescent orbitofrontal cortex (involved in motivation) was similar to that in children.11 The changing balance between frontal and limbic systems helps us understand many of the cognitive and behavioral changes of adolescence.

Normal Changes versus Pathology

One of the greatest challenges for parents and others who work with teens is to distinguish sometimes exasperating behavior from genuine pathology. Against the backdrop of healthy adolescence, which includes a wide range of mood fluctuations and occasional poor judgment, is the reality that many types of pathology emerge during adolescence, including anxiety disorders, bipolar disorder, depression, eating disorders, psychosis, and substance abuse. The relationship between normal neurobiological variations and the onset of psychopathology is complicated, but one underlying theme may be that “moving parts get broken.” In other words, development may go awry, predisposing adolescents to disorders. Although neuroimaging is beginning to establish correlations between brain structure or function and behavior, a link between typical behavioral variations and psychopathology has not been firmly established. For example, the neural circuitry underlying teen moodiness may not be the same circuitry involved in depression or bipolar disorder. A greater understanding of the relationship between specific adolescent brain changes and their specific cognitive, behavioral and emotional consequences may provide insight into prevention or treatment.

In the meantime, late maturation of the prefrontal cortex, which is essential in judgment, decision making and impulse control, has prominently entered discourse affecting the social, legislative, judicial, parenting and educational realms. Despite the temptation to trade the complexity and ambiguity of human behavior for the clarity and aesthetic beauty of colorful brain images, we must be careful not to over-interpret the neuroimaging findings as they relate to public policy. Age-of-consent questions are particularly enmeshed in political and social contexts. For example, currently in the United States a person must be at least 15 to 17 years old (depending on the state) to drive, at least 18 to vote, buy cigarettes, or be in the military, and at least 21 to drink alcohol. The minimum age for holding political office varies as well: some municipalities allow mayors as young as 16, and the minimum age for governors ranges from 18 to 30. (On the national level, 25 is the minimum age to be a member of the U.S. House of Representatives, and 35 to be a senator or the president.) The age to consent to sexual relations varies worldwide from puberty (with no specific age attached) to age 18. In most laws the age at which a female can consent to sexual relations is lower than the age for a male. In the United States the legal age to consent to sexual intercourse varies by state from 14 to 17 for females and from 15 to 18 for males. Clearly, these demarcations reflect strong societal influences and do not pinpoint a biological “age of maturation.” For instance, the age of majority was increased from 15 to 21 in 13th-century England because one needed both to be strong enough to bear the weight of protective armor and to acquire the necessary skills for combat. Societal influences also contributed to the 26th Amendment to the United States Constitution, which in 1971 lowered the voting age from 21 to 18 to address the discrepancy between being able to be drafted and being able to vote. Delineating the proper role of developmental neuroscience, particularly neuroimaging, in informing public policy on age-of-consent issues will require extensive deliberation with input from many disciplines.

From the perspective of evolutionary adaptation, it is not surprising that the brain is particularly changeable during adolescence—a time when we need to learn how to survive independently in whatever environment we find ourselves. Humans can survive in the frozen tundra of the North Pole or in the balmy tropics on the equator. With the aid of technologies that began as ideas from our brains, we can even survive in outer space. Ten thousand years ago, a blink of an eye in evolutionary time spans, our brains may have been optimized for hunting or for gathering berries. Now our brains may be fine-tuned for reading or programming computers. This incredible changeability, or plasticity, of the human brain is perhaps the most distinctive feature of our species. It makes adolescence a time of great risk and great opportunity.

 

References

1. L. P. Spear, “The Adolescent Brain and Age-Related Behavioral Manifestations,” Neuroscience and Biobehavioral Reviews 24, no. 4 (2000): 417.

2. Centers for Disease Control and Prevention Health Data Interactive, http://205.207.175.93/hdi/ReportFolders/ReportFolders.aspx?IF_ActivePath=P,21, Mortality by underlying and multiple cause, ages 18+: US, 1981-2005 (Source: NVSS); accessed February 23, 2009.

3. F. M. Benes, in C. A. Nelson and M. Luciana, eds., Handbook of Developmental Cognitive Neuroscience (Cambridge, MA: MIT Press, 2001), 79.

4. R. D. Fields, “White Matter in Learning, Cognition, and Psychiatric Disorders,” Trends in Neurosciences 31, no. 7 (2008): 361.

5. Z. Nagy, H. Westerberg, and T. Klingberg, “Maturation of White Matter Is Associated with the Development of Cognitive Functions during Childhood,” Journal of Cognitive Neuroscience 16, no. 7 (2004): 1227.

6. G. K. Deutsch, R. F. Dougherty, R. Bammer, W. T. Siok, J. D. E. Gabrieli1,  B. Wandell, “Children’s Reading Performance Is Correlated with White Matter Structure Measured by Diffusion Tensor Imaging,” Cortex 41, no. 3 (2005): 354.

7. C. Liston, R. Watts, N. Tottenham, M. C. Davidson, S. Niogi, A. M. U., B.J. Casey, “Frontostriatal Microstructure Modulates Efficient Recruitment of Cognitive Control,” Cerebral Cortex 16, no. 4 (2006): 553.

8. V. Menon and S. Crottaz-Herbette, “Combined EEG and fMRI Studies of Human Brain Function,” International Review of Neurobiology 66 (2005): 291.

9. M. H. Grosbras, M. Jansen, G. Leonard, A. McIntosh, K. Osswald, C. Poulsen, L. Steinberg, R. Toro, and T. Paus, “Neural Mechanisms of Resistance to Peer Influence in Early Adolescence,” Journal of Neuroscience 27, no. 30 (2007): 8040.

10. N. Gogtay, J. N. Giedd*, L. Lusk, K. M. Hayashi, D. Greenstein, A. C. Vaituzis, T. F. Nugent III, D. H. Herman, L. S. Clasen, A.r W. Toga, J. L. Rapoport, and P. M. Thompson, “Dynamic Mapping of Human Cortical Development during Childhood through Early Adulthood,” Proceedings of the National Academy of Sciences of the United States of America 101, no. 21 (2004): 8174.

11. J. M. Bjork, B. Knutson, G. W. Fong, D. M. Caggiano, S. M. Bennett, and D. W. Hommer, “Incentive-Elicited Brain Activation in Adolescents: Similarities and Differences from Young Adults,” Journal of Neuroscience 24, no. 8 (2004): 1793.

Stress Anxiety and Depression – a common phenomenon for familys – parents, kids, step families….

Tuesday, August 11th, 2015

New Leaf Natural TherapiesParents and kids these days are incredibly susceptibly to stress, anxiety and depression – trying to avoid medication seems to be a common society problem.  But what is the answer?  Small business owners have a constant barrage of stressors – but let’s think about what really starts it all…  If you’re taking medications and would like to chat about how to start the process of going natural, book an apt to discuss the possibilities…

  • Fatigue.  It’s easy to get depression and fatigue mixed up.  Let’s face it – when we’re working hard, relaxing at the end of the day feels not only important, but the only way to re-boot our energy systems.  Depression switches off our motivation and energy hormones.  There are natural supplements that help your adrenals and mitochondria regenerate:  Adrenotone; Adaptan; MitoActivate; Thyrobalance… to name a few.  An OligoScan is a great way to find out how well your metabolism, your stress, your nerves are doing…
  • Sleeping too much or not enough.  Hormones linked to stress and depression (and sleeping too much or too much) are the same.  We need serotonin (our feel happy hormone) to convert to melatonin to help us sleep.  So a deficiency can affect our going-to-sleep and waking-up and being-happy hormones.  Supplements such as Proxan, Stressan and Calm X are some of our favourite serotonin supplements.
  • Diet – dodgy diet – inflamed brain.  Healthy diet – healthy brain.  There’s a massive gut-brain connection – you can’t eat crap and expect to think happy thoughts.  Ask about our  IgG Food Detective with your next apt to find out if your foods are messing with your brain!
  • Chronic pain, stomach ache and backache – these can go hand in hand with depression.  Feel-good-hormones such as serotonin are anti-inflammatory, and pain hormones shut down our feel-good-hormones.  It’s hard to feel happy when you’re in pain!  And drugs DON’T fix the feel-good-hormones.  Probiotics such as Probex for IBS, MetaFibre and Calm X for the gut lining can support the gut…  and we have many treatment options for chronic pain conditions – kinesiology, massage, microcurrent, supplements, infrared saunas & reiki.
  • Irritability – feeling frustrated with the wife, kids or boss too easily?  Stress hormones (and too much coffee and sugar!) can make us depressed and irritable and give us a shorter fuse.  Getting our hormones balanced – yeh, I know!, helps us feel like we’re happy again.  Relaxan, Resilian and Stressan are fantastic for balancing the moods – Resist X & Chromium Plus are great for balancing blood sugar.
  • Difficulty Concentrating – when we’re depressed we’re constantly thinking about the negative side of things, so it’s hard to stay on task and organised.  Brahmitone & Omega Brain Care are a few of our favourite brain combos.
  • Anger or Hostility – The Chinese call this ‘excess chi’ when we’ve got too much anger.  It tends to be linked with liver stress and there are herbs and nutrients that help to calm anger.  Stressan and Calm X are our favourites for calming our ‘excess chi’. hee hee
  • Stress – men are more likely to report stress than depression, probably because it’s more socially acceptable to do so.  The good thing about natural health is we’re more interested in getting you to feel better, than we are in ‘naming’ and ‘diagnosing’ the disease – and then coming up with an appropriate drug.  Tribulus Synergy, Calm X and Adrenotone are my favourite men’s supplements.
  • Anxiety – it’s easier to admit anxiety than depression – anxiety, once again, feels more socially acceptable – being worried, being stressed, feeling anxious about life, kids, relationships, business, job, money… the list goes on.  Anxiety is often a pre-cursor to depression.  GABA powder or capsules is ‘the anti-anxiety’ nutrient – Adaptan and Calm X are great anti-anxiety combos…
  • Substance Abuse – And here’s the kicker… how easy is it to relax and forget your stress, worry, depression – with a scotch or beer in one hand – and some hot chips in the other!  Our brain needs to feel good, unfortunately alcohol often fills that role – but the side effects (when we abuse it) are high.  Higher risk of everything – cardiac disease, cancers, gut problems, pain issues, headaches, migraines, poor libido!  which leads us to….
  • Sexual anxiety & performance issues – yep, to add insult to injury – depression doesn’t help the testosterone levels.  We need the same building blocks in the body for all hormones (feel-good hormones/stress hormones/sexual hormones) so if our body is feeling stressed, there’s little nutrition left over for making babies – and let’s face it, sex is about making babies!  For women, we have O-Lift and Tribulus Synergy – to boost oestrogen and testosterone, for men we have Tribulus Synergy and Androtone…testosterone boosters!
  • Indecision – when our body isn’t feeling good – our brain determines what’s important and what’s not!?  Bills aren’t important, deciding what to eat isn’t important – decisions become increasingly challenging and it’s harder and harder to feel motivated to et things done.  We use kinesiology, reiki and reflexology to help the brain function more effectively.
  • Suicidal Thoughts.  Okay.  Hopefully you haven’t been here, but so many people have!  When life feels overwhelming, stressful, bad enough so that worry and sadness take over, it’s hard to find a solution.  Please believe us when we say there is hope!  Our combination of nutritionals and herbals can bring people back from the brink – kinesiology and reiki can start to give you another perspective.  Reflexology & massage increase dopamine & serotonin.  One day at a time.  Breathe.  Get support and start dealing with it.  The great thing as well with kinesiology or reiki or reflexology is that you don’t NEED to talk if you don’t want to.  It works.  We’d often recommend a combination of B Complex, adrenal support, serotonin/GABA/dopamine supplements – and check toxicity levels (Live Blood or OligoScan) so that we can see if serotonin pathways are working or not!

Call us on 3348 6098 to discuss what appointment will be best for you.  Consider the OligoScan (14 years and over – hormones, stress, toxicity, minerals, heavy metals); Looking at your blood – in real time! (toxicity, gut, essential fatty acids) testing.

Reflexology and Infertility, Hormonal Issues, Endometriosis, Poly-Cystic Ovaries and General Hormonal Balancing

Wednesday, January 14th, 2015

Is reflexology the new cure for infertility?

I found this article about reflexology and infertility when I was doing some research – with reflexology now available at our clinic, and one of our specialties being fertility issues, I was happy to hear that reflexology has been found (and Carole specialised for many years as a reflexologist specialising in infertility) to help and support hormonal problems of all types.  We also do Chi Nei Tsang abdominal massage at New Leaf, which also supports (like reflexology does) better blood supply, nerve supply, lymphatic detoxification, and reduces congestion of the ovaries, fallopian tubes, uterus, abdominal cavity, pelvic positioning.

Hormonal imbalances we help at new leaf, with our combination of reflexology, naturopathy, chi nei tsang, microcurrent and emotional support (kinesiology & reiki healings) are:

  • endometriosis
  • poly-cystic ovaries
  • infertility in both men and women
  • low libido
  • cysts and fibroids
  • benign tumours
  • cervical dysplasia
  • breast issues
  • PMT, post menstrual tension
  • menopausal conditions
  • post birthing traumas
  • cystitis and other pain linked to sexual intercourse
  • hidden infections in the abdominal cavity
  • cancer support:  before during and after treatments

Call us to see if we can help your condition.  I’m sure we can!!  3348 6098

Join us on FACEBOOK:

  • New Leaf Natural Therapies GROUP
  • New Leaf Natural Therapies PAGE
  • HCG Weight Loss Support Group at New Leaf Natural Therapies
  • The Brain Centre at New Leaf Natural Therapies

by ANDREA PERRY, femail.co.uk

Infertility can be an emotionally exhausting, not to mention expensive, condition.

But according to a growing number of people, the key to overcoming the problem for many couples could be far simpler than they think – thanks to reflexology.

 

An increasing number of women claim this popular type of foot massage has helped them conceive. Now a medical study has been launched to discover if the claims are true.

Reflexology, a traditional healing art dating from the ancient Egyptians and Chinese, involves manipulation of pressure points in the hands and feet and is often used to ease period pain, headaches, sinus and back problems as well as the effects of chemotherapy.

Practitioners claim the soles of the feet are like a mini map of the inside of the body and are linked to our inner organs and systems, including the fallopian tubes and ovaries. By massaging different points on the feet therapists claim they can unblock energy pathways in the body and so help the body to regain its natural balance and heal itself.

Some points on the foot are associated with a woman’s egg production and by manipulating these areas reflexologists claim they can correct the imbalances which can hamper pregnancy.

The latest research, a two year clinical trial at the IVF unit at Derriford Hospital in Plymouth,

is the brainchild of reflexologist Jane Holt. She approached the unit after 13 of the 23 women she treated with a range of fertility problems fell pregnant last year.

Beccy Wellington, 34, an auxiliary nurse, from Kingsbridge, in Devon, is convinced that her trip to see Jane in November 1999 resulted in the birth of her son Luke, who is now five months old.

‘We had been trying for a baby for just over a year and had begun to look at other ways that would help me conceive when someone recommended reflexology,’ she said.

‘I had four treatments and was pregnant within three weeks. I am convinced that the reflexology got my body in working order so I was ready to conceive. I also felt ten times better, more positive and a lot happier in myself.’

‘I went in there with an open mind, but was totally shocked to find myself pregnant so soon,’ she said. ‘I would definitely advise other women to try reflexology. It may not work for everyone, but it worked for me and it is worth trying.’

Jane Holt, a reflexologist for 12 years, claims one woman she helped had been trying to get pregnant for 20 years.

‘Infertility is a complex problem and I think that often what is needed is something that gives the system a bit of a kick start and that’s what reflexology can do,’ she said.

‘At least this gives women the option to try something else while they are going through hospital procedures and even if it works for some of them that’s a bonus.’

Cathy Shipton, who plays nurse Duffy in the BBC TV series Casualty, is also convinced that reflexology on the set of the show in Bristol helped her to become pregnant.

She had been trying to have a baby for four years, but four months after having twice weekly reflexology sessions she became pregnant.

 

In the new study, 150 volunteers will be offered reflexology rather than the fertility drug clomifene, which is usually used to induce ovulation. This drug works in about 70 per cent of patients, but the drug’s main drawback is it can increase the likelihood of a multiple pregnancy.

The volunteers will each receive eight treatments over a two to three month period. In order for the trial to be conducted in a scientific way, patients and hospital staff will not know whether true reflexology or a ‘dummy’ version has been given. Only the reflexologist will know who has had the real treatment.

One in seven couples suffers with infertility. Last year the Plymouth IVF unit saw over 900 patients. Thirty per cent of these were not producing eggs.

The hospital has already pioneered the use of acupuncture – the insertion of fine needles into the body to unblock energy channels – in pregnancy and routinely offers it to women who might benefit.

Dr Jonathan Lord, clinical lecturer in reproductive medicine at the hospital, is co-ordinating the new trial.

‘At the moment there is no evidence to say whether reflexology works or not,’ he said. ‘Although there are several reports of patients in whom it has worked, this is not sufficient evidence to enable it to be routinely recommended.’

Healing Hormones

Friday, June 20th, 2014

A lot of clients having been coming in lately with menstrual and hormonal imbalances. Clinically, things often tend to come in waves, but the more women I treat the more I realise how timeless and important it is that we care for our hormonal health.  A woman experiences on average, 300 to 400 menstrual cycles in her lifetime, so from that perceptive, it makes sense to make menstrual and hormonal wellness a priority if we are seeking a balanced, healthy life, whatever your health goal may be.

Ovulation and menstruation are processes in the body that connect in with our emotional life, our stress, and how we feed our bodies. It’s important that we listen to signs and symptoms, as they can be extremely useful pointers to things that are out of balance, either physically or emotionally.

The traditional medical answer to menstrual issues and contraception is synthetic hormones. Tolerability to these does vary considerably between women, depending on genetics, and often on detoxification ability.  It’s astonishing the number of women who are taking some form of synthetic hormone medication, very often from a young age, to manage (suppress) symptoms of hormonal imbalance. Sometimes coming off hormone medications (including the oral contraceptive, IUDs, or implants) can be a hard road. And it can be long.

Fortunately, there is an enormous amount of natural support available for correcting hormonal imbalances and relieving related symptoms. Herbal medicine is abundant in herbs that support women’s health. Naturopathically we also use specific nutrients for supporting hormones, and Kinesiology to reduce stress, create inner balance and get to the heart of emotional issues fuelling hormone imbalances. We also offer Chi Nei Tsang, a healing abdominal massage to relieve congestion and blockages, with which we have excellent results with menstrual pain.

The keys to treating hormone issues successfully, naturally, are;

–          Get the right prescription from an experienced practitioner. Hormone issues are complex. There are a myriad of herbs and supplements with different actions, so it is essential the right ones are chosen for your unique health picture. At New Leaf we combine decades of study with muscle testing, matching our experience and knowledge with what your body is saying.

–          Stay on track. Take your supplements and herbs, and do your best to stick to a healthy plan. It’s all worth it. It all makes a difference.

–          Trust and Patience. As Hormone issues are often long-standing, it is important to be patient with your body, and trust it is continually striving towards balance. Your body’s natural urge is towards healing. When we identify any blockages to healing, we can remove them, and your body does the rest. It can take time, but it does happen.

–          Develop inner attention. Often when symptoms come up, we immediately want to move away from them, resist them, shut them down.  If we pause for a moment, listen to our symptoms, we can create the space to ask ourselves, ‘what is it my body really needs, right now?’ The answer often comes to us. So often, it is in some way, a call for rest or self-nurture. There is no condition in the body that is not improved by increased rest and stress reduction.

Other things you can do at home:

Actually, what you do day to day can make a huge difference to your menstrual wellbeing;

–          Go on a water diet – meaning, in addition to the food you eat, drink only pure water, and plenty of it. Avoid all other drinks except for herbal teas and green tea. Within a week you can notice changes in your skin tone and hydration, energy, digestion, and concentration. Always drink water at room temperature and away from meals.  

–          Sleep in total darkness. For hormones to balance well, we need to create a natural, healthy balance of light when we are sleeping. Avoid LCD screens or TV late at night, and ensure your bedroom is dark. The exception to this is during full moon, where allowing moonlight into your room if possible is recommended, or alternatively putting on a small nightlight to mimic moonlight.

–          Eat regularly – our hormones are greatly affected by fluctuations in blood sugar. Eating healthily is one thing – we also need to eat regularly to reduce stress on the body caused by big fluctuations in our blood sugar. For many of us, this means breakfast, lunch, a small snack, and dinner. Make dinner a light meal if possible.

–          Quit sugar – Sugar can aggravate hormonal symptoms, particularly skin breakouts, PMS and general irritability. It also has a huge impact on ovarian issues such as PCOS.

–          Take space – Classic author Virginia Woolf wrote that ‘every woman needs a room of her own’. Very wise words indeed. An important part of anyone’s life is having the physical and emotional space to just ‘be’. We all need time out on a regular basis. If there isn’t a spare room to call your own in your house, alternatives could be talking a walk outside, or transforming the bathroom in the evenings with candles, music, essential oils and an Epsom salts bath.    

–          Journal – writing and reflecting can be extremely therapeutic and also quite revealing. Taking time to write down thoughts and feelings can help reveal recurrent patterns over the course of the month. Often we write off intense emotions as simply part of PMS, but often there are deeper and very real issues that then remain unaddressed. Journaling can help identify these so that they can be processed.

–          Practice Yoga – Yoga is enormously beneficial for hormonal health. By increasing circulation and calming the mind, yoga can help to reduce pain, bloating, PMS and improve energy and overall sense of wellbeing.

We are here to help!

Call us for an assessment, consultation and personalised treatment plan.

Adrenal Fatigue/Chronic Fatigue – Natural Support at New Leaf

Friday, June 14th, 2013

Adrenal Fatigue is such a huge problem in society these days, each person’s history is totally different, and the ability to prescribe a one-off bottle of Adrenotone and fixing it is just about over.

Signs that you may have adrenal fatigue!

1. increased caffeine intake
2. increased snacking to control blood sugar fluctuations
3. increased fatigue
4. increased irritability
5. increased sleep problems If you feel “wired but tired” you likely need some adrenal support.
6. development of any long-term disease
7. ADD, ADHD, inability to think clearly
Some of our favourite supplements and protocols for Adrenal Fatigue are:
1.  Kinesiology for Immune & Endocrine balancing, stress, dealing with traumas
2.  Frequency Specific Microcurrent:  helps to remove toxins caused by inflammation
3.  Remedial Massage, Hot Stone Massage, Relaxing Massage & Infrared Saunas:  increases serotonin levels, reduces inflammatory hormones and helps us to heal
4.  Supplements:
*  Adrenotone – combination of nutrients which help thyroid and adrenal fatigue
*  Ultra Flora Immune, Andro NK, Bactrex, Parex, Costat, Waiora NCD – for those who have a history with infections preceding fatigue
*  Gaba, Proxan, Resilian, Stressan, Relaxan, Estrofactors, Oestroclear – for those with a history of stress/depression/anxiety/hormonal imbalances
*  Resist X, Chromium Plus, MetaPure EPA/DHA, Mitochondrial Complex – balances blood sugar and increases Mitochondrial Function…
*  Lipoic Acid, Glutathione, NCD, Oxidant Protection, non-acidic Vitamin C
We also see signs of exhaustion in a number of our clinical tests including Live Blood Screenings and Bio-impedance Analysis Screenings.
Call us to book an appointment (phone appointments or in-clinic appointments) on 3348 6098
Madonna Guy
Chief Clinician
New Leaf Natural Therapies
3348 6098
healthteam@newleafnaturaltherapies.com.au

New Leaf now provides Chi Nei Tsang Abdominal Massage – read on!

Tuesday, January 8th, 2013

Chi Nei Tsang (Abdominal Massage) available at New Leaf Natural Therapies

What is Chi Nei Tsang?

Energetically – who knows the cause of sickness?  Where does internal pain, issues with our major organs such as the liver and kidneys, the stomach, small intestines, large intestines come from?  Naturopathically, it has always been taught that step one for any long-term health problem has been to cleanse the body’s filters – the digestive tract, the liver, the immune system/lymphatic systems and the kidneys.  Congestion in any of these areas can cause poor energy, poor circulation and poor detoxification of any of these systems.

In Chinese medicine it has always been taught that blocked energy starts this toxicity building up – Chi Nei Tsang helps with both – it starts to move the inflammation, the toxicity and the energy blockages that are stopping blood, lymphatic flow and nutrient absorption throughout our major organs.

Have you ever felt ‘knots’ in your stomach, tightness under the ribs, described this to your therapist who simply prescribed antacids or digestive enzymes?  These is so much more to health than that…and the last thing you want is to suppress symptoms which may come back to haunt you down the track.

Our Foundations of Health programme is a nine month detoxification process which starts the body healing as our filters start to clear.  It is a long process (quick and dirty detoxes rarely make lasting change) to health for some people.

I found this fabulous description on Chi Nei Tsang from http://radiantliving.com/chi-nei-tsang-abdominal-massage/ in the U.S. and it describes energy and the abdomen and how it relates to our health, our wellbeing, our stressors, our operations and medications…

“The Taoist sages of ancient China observed that humans often develop energy blockages in their internal organs that result in knots and tangles in their abdomens. These obstructions occur at the center of the body’s vital functions and constrict the flow of Chi (energy), our life-force. The negative emotions of fear, anger, anxiety, depression, and worry cause the most damage. Problems can also be caused by overwork, stress, accidents, surgery, drugs, toxins, poor food, and bad posture.

Through meditative practices the sages learned to look within themselves. They discovered the internal organs connect with the Five Forces of the Universe and provide a link between the human microcosm and the universal macrocosm. The organs contain the essences of the spiritual force of a human being. They also provide the physical lines of force that hold the body together and give it structure.

When obstructed the internal organs store unhealthy energies that can overflow into other bodily systems and surface as negative emotions and sickness. Always in search of an outlet, these negative emotions and toxic energies create a perpetual cycle of negativity and stress. (Fig. 1) If the negative emotions can’t find an outlet, they fester in the organs or move into the abdomen, the body’s “garbage dump.” The abdomen can process some emotional garbage, but more often it can’t keep up with the flow. The energetic center of the body located at the navel becomes congested and cut off from the rest of the body.

Fig. 1 Negative energy cycle leads to knots and tangles in the abdomen.

B. Chi Nei Tsang: A Method to Clear Blocked Energy

Chi, the life-force energy, moves through the body’s internal channels, nervous system, blood vessels, and lymph glands. These systems concentrate and cross paths in the abdomen which acts as their control center. Tensions, worries, and stresses of the day, month, or year accumulate there and are seldom dispersed. ‘These disturbances can cause physical tangling and knotting of the nerves, blood vessels, and lymph nodes. The result is the gradual obstruction of energy circulation.

The ancient Taoists realized that negative emotions cause serious damage to one’s health, impairing both physical and spiritual functions. They understood that each human emotion is an expression of energy and that certain emotions could indicate the negative energy behind many physical ailments. They also identified a specific cycle of relationships between the emotions and the organs. For example, the experience of a “knot” in one’s stomach indicated the presence of worry, the negative emotion that accumulates in the stomach and spleen.
The Taoists discovered that most maladies could be healed once the underlying toxins and negative forces were released from the body. They developed the art of Chi Nei Tsang to recycle and transform negative energies that obstruct the internal organs and cause knots in the abdomen. Chi Nei Tsang clears out the toxins, bad emotions, and excessive heat or heat deficiencies-that cause the organs to dysfunction. (Fig. 2)

 

Fig. 2 Ancient Taoists massaged their abdomens and organs to stay healthy.
C. Chi Nei Tsang: A Complement to other Disciplines”

Makes a little sense doesn’t it?

We complement Chi Nei Tsang with all of the other services we provide in our clinic, in Wynnum Brisbane.

We know that Chi Nei Tsang is very energizing, strengthening, and detoxifying the internal organ systems of our body.  It supports the removal of negative influences and is fantastic for intestinal blockages, cramps, knots, lumps, scarring, headaces, menstrual cramps, poor blood circulation, back pain, infertility, impotence and many other issues.

Imagine avoiding intestinal surgery through an incredibly systematic and thorough treatment process.

For bookings, phone 3348 6098 and chat to Linda, Annette or Gabby to discuss pricing options.

Join us on Facebook:       New Leaf Natural Therapies (Group – clients only – ask to join J )

New Leaf Natural Therapies (Page – simply ‘like’)

HCG Weight Loss Support Group (Page – simply ‘like’)

Hear us on 4BC & Bay FM:

Madonna Guy speaks at 9pm on 4BC (1116am) on Thursday nights with Walter Williams and Jason Jackson, and

Madonna also chats on Bay FM (100.3fm) with Doug and Laraine at 9.10am Friday mornings.

Natural Supplements for Depression, Cravings and Mood Disorders…

Monday, November 26th, 2012
Supplements For Depression and Mood Disorders…
How many of us choose carbs and sugars because of our moods?  Our weight spirals out of control??  We end up feeling anxious, stressed, angry, depressed…
Can we support our neurological function with natural supplements, or do we need to take ‘chemicals’ to sort our out ‘chemical imbalances’. Firstly, the chemical imbalances that are being discussed are hormones like dopamine and seratonin…  Did you know that we make these ‘feel good’ hormones with nutrients we get from fruits, vegies, proteins, eggs, raw nuts and seeds?  Gee, a good diet – you may be thinking? Whereas, when we eat carbs and sugars we create a need for more carbs and sugars.  The breakdown of these foods create inflammation, increase our likelyhood of developing (and growing) parasites, candida, fungus, dodgy bacterial infections – all of which like a sweet, acidic environment to live in.  They love it when we eat sweets!!!
So, we’ve all heard about chromium for blood sugar – at a basic level chromium supports balancing blood sugar – but what causes the blood sugar problems?  Did you know that our bugs – parasites, bacteria, fungus, candida – all release enzymes that make us crave sugar?  Cheeky little blighters, aren’t they?
So, some of the supplements I love for balancing our hormones are:
1.  Eagle Chrome, Metagenics Resist X, Insulex, Energy X:  All of these support balancing the blood sugar.  Resist X and Insulex contain ingredients which reverse insulin resistance, a condition happening in the core of each cell in our body; Energy X is a powder with liver and thyroid support, energy support, blood sugar balancing and detoxification support.
2.  Relaxan, Resilian, Stressan:  These 3 metagenics formulas are fabulous for balancing moods.  Relaxan for PMT, irritability and stress created by female hormonal imbalances.  Stressan is for full-on anger, excess ‘chi’ they call it in Chinese medicine, great for sleep disorders and stress, has a little gut and liver support as well.  Resilian is for teariness.  Unable to hold in your emotions.  Emotional resiliance.  All of these formulas support adrenal exhaustion; nerve disorders; increase dopamine and feel-good hormones and are safe to take with medications such as anti-depressants, anti-anxiety medication under supervision from your naturopath.
3.  Proxan and Neurolift:  both of these formulas raise serotonin.  Proxan is a formula we use to support people reducing their doses (slowly and carefully) and increasing natural support for balancing the nervous system.  Neurolift is a combination of herbs and nutrients for the thyroid and nervous system, particularly increasing serotonin and thyroxin.
4.  EPA (as in fish oils):  EPA is a nutrient found in fish oils.  When fully cleansed (be very, very careful of brands) and when we’re taking 2000mg daily of the EPA component in fish oil, it raises serotonin safely and easily.  Best in a liquid form such as Metagenics or BioCeuticals.  Dose is key.
5.  Gut Support:  We make a massive amountof hormones in the gut.  Dopamine and Serotonin (feel good hormones), Oestrogen are found to be released from the small intestines.  Take care of your gut.  If it is playing up, find out what is wrong (possibly best through your naturopath as the gut is one of our specialties) and fix it.  Without sorting out the gut, it’s really difficult to balance moods and hormones long-term.
Good luck!!
Madonna
New Leaf Natural Therapies
3348 6098
Brisbane Australia

Quenching cortisol and reducing inflammation – turning back another reason for weight gain…

Monday, October 29th, 2012

From an HCGer:      I like your statement on inflammation and cortisol switching off your thyroid. I did not know this. Besides HCG, what else can you use to reduce inflammation and turn on the thyroid again. I take Turmeric

Turmeric is a great anti-inflammatory – the types and usefulness depends on the grade, quality and dose taken.  Some aren’t great.  We love the type of turmeric in liquid herbs as well as products (stocked at New  Leaf) such as Inflavonoid Intensive Care.

Switching down cortisol and stress hormones, which create inflammation, can be achieved by a combination of several herbal combinations and nutritional formulas.  Herbs such as passionaflower and valerian, skullcap, Californian poppy, withania, Siberian ginseng, licorice, rehmannia, oats – are adaptogenic herbs – they tone the nerves and adrenals, quench cortisol, reduce inflammation caused through the nervous system.

B Complex supports adrenal production, Magnesium and Calcium both bind nervous system neurotoxins and calm it down.  We love products such as CalmX which settles cortisol and has huge doses of magnesium, calcium and B complex in it.  It’s great for people with panic attacks too…

Products such as Adrenotone quench cortisol, support adrenals and boost thyroid function, Neurocalm, Resilian (teariness, lack of emotional resiliance), Relaxan (PMT, hormonal imbalances, irritability and high stress levels), Stressan (poor sleep levels, anger, excess ‘chi’ in the body, can’t settle down), Adaptan (panic attacks, emotional exhaustion and anxiety), Proxan (depression, anger, crankiness and poor sleep) all settle cortisol levels.  Neurocalm calms the nervous system and improves sleep quality.

You can’t switch ‘on’ the thyroid without turning down the adrenals/cortisol switch.  It really need to be done simultaneously.  Iodine and tyrosine are both required to make thyroxine.  Bladderwrack is a herb high in iodine, all seaweed sources will have some iodine.  Products such as Metagenics Thyrobalance, Mediherb ThyroCo, Thorne Iodine & Tyrosine, Metagenics EnergyX and Adrenotone all support thyroid function.

Different products work in different ways and have effective treatments for different symptomatology.

Let us help you get your nervous system back on track!

Madonna Guy
New Leaf Natural Therapies
3348 6098